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Reviews on semiempirical methods treating chemical bonding in the framework of quantum 
mechanics have been a favored subject for a long time. Recent tendencies have been described by 
Y. I 'Haya [92], P. G. Lykos [132], R. McWeeny [140], I. Fischer-Hjalmars [48-51], K. Ohno [154]. 
The author will follow along these lines with no intention to be complete: e.g. ligand field theory will 
not be a topic of this paper. 

Instead, the author will try to give a more systematic way for a comparison of different ~-electron 
theories and the recent extensions to a-electrons than has been done before. For more than one reason, 
the year 1963 has brought a significant change. The g-electron theories had reached a culmination 
point with Berthier's complete explanation of the Pariser-Parr approximation. Parr and Del Re 
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showed a way towards an improved n-electron theory. Correction effects like n-electron polarization 
in the effective Hamiltonian, inclusion of 3pn- and 3dn-orbitals and n-electron correlation had become 
familiar extensions. According to Orloff and Fitts larger molecules should be attacked by an Aufbau 
principle. This situation was well reis'resented in Parr's well known book. At the same time doubts 
were expressed that some basic assumptions of the n-electron approximation were not valid. This led 
to an extension of the Hiickel scheme by Hoffmann. Since then inclusion of all valence electrons or 
even "non-bonding" 1s-electrons has become a definitive necessity. Recently some contribution on the 
questions involved has been given by ab-initio calculations (Preuss [-180]; Clementi [24, 25]). 

The following introductory remarks on the LCAO formalism may be regarded as a guide-line for 
comparison and discussion of n-electron and all valence electron theories. Basic assumptions, matrix 
elements of the SCF operator, expressions for the total electronic energy, and the remaining basic 
quantities are presented for easy comparison. Tables on the various choices of parameters are included 
as they have been proposed or used. 

This representation is by no means complete. So far there is little insight how to integrate properly 
configuration interaction or, more general, correlation in a semiempirical scheme. Yet, the author 
hopes that this systematic way of representation may clarify what kind of restrictions are involved in 
the present theories and may be helpful to support studies in the directions shown below. 

I. Introductory Remarks 

1. The Total Energy of an Electronic State 

Neglecting spin-orbit ,  spin-spin and relativistic effects the H a mi l t on i a n  for n 
electrons in a molecule is defined in the B o r n - 0 p p e n h e i m e r  approx imat ion  as 

1 ~ __1 (1.1) 
H = H . . . .  + 2-  r~j 

where H . . . .  is the sum of the kinetic and  potent ia l  energies of all electrons in the 
field of the core 

n 

H .. . .  = ~ IT(i) + Vcore(i) ] . (1.2) 
i 

In  order to get the electronic energy of the system, we have to find a solut ion of 
the relevant eigenvalue equa t ion  

H ~Y = E 7 j . (1.3) 

As in most  cases the eigenvalue p rob lem (1,3) is too complicated to yield directly 
analyt ical  expressions as solutions,  we have t o  restrict ourselves to approxi-  
mations.  Among  those, one of the bes t -known is the A S M O  CI (ant isymmetr ic  
molecular  orbi tal  conf igura t ion interact ion)  approx ima t ion  which represents the 
total  wavefunct ion ku as a finite l inear combina t ion  of ant i symmetr ized  product  
funct ions ~ consist ing of molecular  orbitals  ~b. The ~b's may be taken in the form 
of de terminants :  

K 

= Z aicbi (1.4) 
i 

with ~i  = det [q~il q~a -.. ~bi,I - 
The coefficients A~ are regarded as var ia t ion  parameters  and  determined by 

the appl ica t ion of the var ia t ion  principle to the total  energy expression 

e - ( 1 . 5 )  
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This yields a set of linear equations for the Ai 
K 

Am(Hm. - S, . .E) = O, n = 1 . . .  K (1.6) 
m 

and a secular equation for E 
det [H,.. - S,..E[ = 0 (1.7) 

where S,.. and H,.. are integrals over (b functions: 

S.,. = j" O*4,,,dr, (1.8a) 

H,. .  = I q)* H el).dz . (1.8b) 

With increasing number K of configurations q~i the total wavefunction can be 
approximated to any desired degree if the Oi form a complete set of functions. 

In order to be able to calculate the values of the integrals Sin, and Hm, in special 
cases one has to have a method to get the necessary information about the q~'s 
which build up the O's. The idea behind the concept of molecular orbitals is the 
independent  particle picture. It is assumed that each electron moves independent 
from the other electrons in an effective field arising from the nuclei and the other 

electrons. H = H o + Ha (1.9) 
n 

with Ho = ~ Heft(i) .  
i 

With the assumption H = H o, regarding H I as a small perturbation, one is 
able to separate the Schr6dinger Eq. (1.3) and to solve the equation for each 
electron separately. It is advantageous to use the same form of Hoff for all electrons 
because in this case one has only one representative eigenvalue problem to solve, 
the eigenfunctions of which can easily be obtained as an orthogonal set" 

Heff t~ i  ~ eidgi .  (1.10) 

The energy integrals over antisymmetrized product functions built up from an 
orthogonal set of MO's can be simplified to a high degree (Parr [166]). 

Hef f may be chosen as H .... (i) or as the self-consistent field operator F -- H .... (i) 
+ G(i), where the last operator represents an average electronic repulsion field. 
The self-consistent field approximation can be adopted only if the total energy 
can be expressed in a special form (Roothaan [184, 185]). In this case, the assump- 
tion that Hef f is equal for all electrons cannot be preserved in general, especially 
if the molecule contains an odd number of electrons. Besides, one has to have a 
certain knowledge of all orbitals q~i which are used to describe electrons, in order 
to have a starting point for an effective field resulting from the core and averaged 
electronic repulsion. 

Once the ~b i are known the integrals S,,, and H,,, are expressible in terms of 
the following integrals 

Si~ = j" q~*q~flz, (1.11 a) 

Iq = j" ~b*H .... q~jdz, (1.11b) 

J0kz = f q~*(1)~b*(2) r~2  ~b,(1)q~, (2)dzxdv 2 . (1.11c) 
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2. Closed and Open Shell  Sys tems  

In many molecules with an even number 2n of electrons the most important 
contribution to the ground state wavefunction ~v N arises from one determinant 
~N only. In this case the electrons can be grouped in pairs where each pair is 
described by molecular orbitals with the same space part differing only by the 
spin part ~ or ft. 

(2.1) 
q~2.-1 = ~ . ~ ,  4~2. = ,p./~. 

The q5 i resp. lpi are solutions of (1.10). The eigenvalues e~ of (1.10) are ordered 
according to increasing values and the 2n electrons are described to "occupy" the 
n lowest energy levels, two in each level. As according to the Pauli principle the 
maximum number of electrons in a non-degenerate level is two, this case is called 
a "closed-shell" case. 

Molecules with an odd number of electrons cannot be described in such a 
simple way because the resulting spin is different from zero. How to choose an 
effective Hamiltonian operator H~ff(i) and to obey spin restrictions is reviewed 
elsewhere (Berthier [8]). Furthermore one cannot distribute all electrons in such a 
way that each occupied orbital is fully occupied. As there remains at least one 
"singly occupied" orbital, we call it an "open-shell" case. In the simplest form of 
an excitation where one assumes that one electron has moved from an occupied 
to an unoccupied level, we have an open-shell case, too. But we must not forget 
that our model, where excitation takes place from and to one-electron levels, has 
involved as basis the independent-particle picture. 

3. LCAO Formal i sm 

Unfortunately there is no easy approach for molecules to solve Eq. (1.10) 
directly. It was a gratifying idea (Lennard-Jones [-115]; Coulson and Longuet- 
Higgins [28]) to start with a set of atomic orbitals Zi from which linear com- 
binations are built to approximate the molecular orbitals 'Pi 

A 

tPi = ~ ci~xv (3.1) 
v 

and to determine the coefficients ci~ by the variation principle. This leads to 
equations for ci~ and ~ similar to (1.6) and (1.7). 

A 

2 Ciu,__.vr - -  S#vl~i) = O, v = 1 ... A , (3.2) 
/t 

det [/_/eft Slzvei[ = 0 (3.3) --- i - - / i v  - -  

where H eft and S,~ are defined as integrals over atomic orbitals -- /ZV 

S,v = S * (3.4a) X~ Z~ dz, 

H e f t =  f , (3.4b) ,~ J Z,  HeffZ~dz �9 
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The molecular orbitals ~Pi can be approximated to any desired degree and the 
solutions of Eqs. (3.2) and (3.3) are unique if the atomic basic set is complete. 
Taking a complete atomic set on each center would lead to an over-complete set. 
As one uses in practice a rather limited number of functions on each center this 
difficulty will be in general avoided. 

Let us consider the closed-shell case with 2n electrons and let us use for Heff 
the self-consistent field operator (Roothaan 1-184]; Hall [63]) 

with 

F = H .... + ~ (2 4 - K,) 
i 

Ji(1)Z,,(1) = f W*(2)~vi(2) r ~  2 dzeZ~,(1), 

(3.5) 

If we take only one configuration as an approximation for the total wavefunction 
T the total energy can be written as 

n 

E = ~- ,~. P~(H~ ~ + F~v ) (3.6) 

where the density matrix P~,,, the core matrix H~ ~ and the self-consistent-field 
matrix Fu~ have the following meaning. 

with 

o c t  

P., 2 Z  * ---~ C#t Civ 
i 

H~ore = S , Zu H .... z~dv 

Q,O" 

(~vleo') ~ , , 1 = Z, (1)Zo(2) - -X~(1)Z , , (2)dz ld 'c  2 . 
2 r 1 2  

(3.7) 

In addition, it proves useful later to use the following notation for the elements 
of the core matrix and the penetration integrals. 

core  fl~,, = H~,~ , ~ # v , 

(v " ##) = - [  X* U * z . d z  , 

U* neutral atom potential. 

(3.8) 
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II. The n-Electron Approximation 

1. Pariser-Parr's Method [161] 

Basic Assumptions 

A. The method is designed for planar unsaturated hydrocarbons and their 
derivatives. Only the n-electrons of carbon (or hetero) atoms are explicitly taken 
into consideration. The original version of the theory assumes that each center 
contributes one n-electron only. 

B. The overlap integral is neglected for orbitals on different centers 

S,v=6u~. (1.1) 

C. The a-system is treated as a non-polarizable core and its effect is included 
in Hcoro 

n .... = T + U , +  Z U~+~U*.  0.2) 

U, or U, is the potential of a carbon (or hetero) atom deprived of its n-electron 
described by the atomic orbital X, or Z~, U~Q is the potential of a neutral atom 
without n-electrons, e.g. an H-atom. 

D. The potential of an atom contributing one n-electron to the system is 
replaced by the potential of a neutral atom and an average electronic potential 
(Goeppert-Mayer and Sklar [60]) 

U~ = U * -  f Z*(2)X.(2) 1 d.c2 " (1.3) 
J r l  2 

E. The atomic orbitals are assumed to be eigenfunctions of an appropriate 
one-electron Hamiltonian (Goeppert-Mayer and Sklar [60]) 

(T + U.)Z. = W.Z . (1.4) 

where W, is considered as an atomic valence state potential. 
F. The resonance integral is zero for #, v non-nearest neighbours 

G. 

{~ for #, v nearest neighbours, (1.5) 
fluv = in any other case. 

Zero differential overlap assumption for electronic repulsion integrals 

(~v lea) = (~ l  ee),~,,,,,5,,,. (1.6) 

Matrix Elements 

With assumptions 1 D and 1 E we can rewrite % as 

~,,-- % -  F~ E(aal.u,u)+ (a : . u , u ) ] - ~ ( Q  : ~.u) 
o" r Q 

(1.7) 
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and furthermore Hef  t which is taken as the self-consistent field operator F 

1 

F , u = W ~ , + ~ P , , ( # # I # # ) +  ~, ( P ~ - l ) ( c r < / ~ # ) -  ~ ( a : # / 0 - ~ ( Q : # # ) ,  (1.8a) 
a :/:/~ a ~ , a  0 

1 
F.~ =//.~ - ~- P,~(#plvv). (1.8b) 

The total electronic energy may then be formulated as 

[ 1 1 E = ~ P u .  Wu+ ~-euu(p#]## ) + E Pu*//u~-Z Z Vuu(a'##) 
,u,v u a ~ l a  

u ~  (1.9) 1[ 1 - 2 ~ P e e ( O ' # P ) +  Q ~, ( P ~ . , - 1 ) ( P ~ - ) - ~ - P u ~ - I  (##Ivy) 

.u:~v 

Basic Quantities 

The remaining quantities to be determined are: 
- Wu is taken as atomic valence state ionization potential of a 2pz-electron. 
fl is chosen to adjust the theoretical value for the first excited singlet state to 

the empirical value; it depends on the choice of the repulsion integrals; for cases 
with heteroatoms more than one//-value is necessary. 

(p#] #/~) 1. is calculated theoretically by taking Slater type orbitals for)~, using 
Slaters shielding exponents. 

2. is set equal to the difference of ionization potential I and electron affinity 
A of a carbon atom I - A .  

(#p[vv) 1. is calculated theoretically like (##[##). 
2. is calculated by the uniformly charged sphere approximation; the diameter 

of the two tangent spheres R , = R ~  = (4.597/Z,)10 -8 cm, Z ,  Slater's effective 
nuclear charge is calculated by fitting the theoretical value of (~#l##) to the 
classical electrostatic self-energy of a sphere. 

3. is calculated by using an approximation formula with a quadratic de- 
pendency on the distance R for distances less or equal to 2.8 

aR + b R  2 =�89 R < 2.8/~. 

a and b are fitted for 2.8 A and 3.7 A by the uniformly charged sphere model 
which is generally used for distances larger than 2.8 A. 

(v : ##) 1. is calculated theoretically like (##l##). 
2. is calculated by an approximation formula which has a quadratic de- 

pendency for distances up to 2.8 A and is set equal to zero for larger distances 

a'R + b'R 2 = W, - W~ + (p'  vv) - (v " l~p) + (#/z [ btp)- (##[vv), 
R_<2.8A 

a,,R + b,,R2 = W _ Wu + (v : g g ) _ ( ~  . vv) + (vv[ vv)_(vvll~#) 

is equal to zero for R > 2.8 A. 
, t t, b" a ,  b, a , are fitted for 2.8/~ and 3.7 A. 

The formula is good only for the calculation of differences of penetration 
integrals; this is sufficient for the calculation of excitation energies. 



98 K. Jug: 

Comments 

The above described method is distinguished by a remarkable simplicity 
which was the reason for innumerable applications. Although improvements 
have been made in the meantime, one should not forget the courage which was 
necessary to establish the ZDO assumptions (1.1) and (1.6) which are essentially 
the reason for its applicability. Those were by no means easily justified. They were 
even used in differential form, instead of the less strong, but sufficient integral one. 
Also assumption (1.4) has been proved to be rather a weak point. Here again the 
integral form as used by Berthier is less restrictive. On the other hand, the adjust- 
ment of fi in connection with the choice of electronic repulsion integrals made the 
scheme superior to Hiickel's method. A better understanding was given later by 
Berthier [9] and Fischer-Hjalmars [49, 50]. The Pariser-Parr method has been 
reinterpreted recently by Kouteck~ [112]. Also a representation in the second 
quantization formalism has been attempted (Linderberg and Ohm [120]). 

2. Pople's Method [171] 

Basic Assumptions 

A.~ Essentially 1A. An extension to hetero atoms with more than one n-electron 
is included. 

B. The same as lB. 
C. The a-system is treated as a non-polarizable core and its effect is included 

in H .... . Neutral atom potentials are not explicitly considered. 

n . . . .  = T +  Uu+ ~ U~. (2.1) 

D. The interaction integrals between electrons and different cores are ex- 
pressed by the interaction of point charges; Z is an effective core charge. 

.f Z* Uozud "c = - Z , , R ~  . (2.2) 

E. Essentially the same as 1E. 
F. The same as 1F. 
G. The same as 1G. 
H. The remaining interaction integrals between electrons on different centers 

are expresse&by the interaction of point charges 

(##1 v v) = RL ~ . (2.3) 

Matr ix  Elements 

With these assumptions the diagonal core element takes the form 

% = W , -  Z Z~R;~  (2.4) 
r 1 6 2  

and the elements of the Hartree-Fock operator may be rewritten as 

1 
Vt, u= W u +  y P u , ~ # [ # # )  + Z (P~,~-Z~)R;~ ,  (2.5a) 

1 1 
F~,, = fl~,~ - ~ P~,~R~, . (2.5b) 
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The total electronic energy expression takes the form 

[ * l + 

,ug:v 

1 [ ' 1 
# r  

(2.6) 

Basic Quantities 

W u is unspecified, should be the same for all molecules. 
fiu~ is calculated through the resonance energy of benzene 

e~ (benzene) - 3e~(ethylene) = 2fl - ~ R-  1. 

(/2#1##) is unspecified. 
Z~ is taken equal to unity for carbon atoms, unspecified for hetero atoms. 
R,~ molecular distance. 

Comments 

Basically different from the Pariser-Parr treatment is the neglect of pene- 
tration integrals and the assumption of point charge interactions. Both contri- 
buted to a further simplification of the scheme and made the effect of net charges 
on atoms more visible. It may be added that Pople liked to define the 1r-electron 
energy by adding the nuclear core repulsion which cancels the last term in the 
bracket of (2.6). Unfortunately some parameters remained unspecified. In later 
papers (Brickstock and Pople [153; Hush and Pople [90]) assumptions 2D and 
2H were dropped./~, ~#1##) and (##1vv) were calculated according to Pariser- 
Parr's method; Wu shall fit the ionization potential of benzene and is assumed to 
include the neutral atom effect. 

3. Ruedenberg's Method [187] 

Basic Assumptions 
A. Essentially the same as 1A. 
B. The overlap integral is taken into account if #,v are. nearest neighbours 

with Muv={~ fOr #' v nearest neighbOurs . (3.1) 

C. The a-system is treated as a non-polarizable core and its effect is included 
in H~o~ 

H .... = T + ~. U, + ~. U, (3.2) 
#eC vEH 

where U~ and U~ are the potentials of the framework without the ~-electrons. 
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D. Essentially the same as 1D. 

U.= U*- f )~*(2)Z.(2) r~2 dz2, (3.3a) 

U~ = U*, (3.3b) 

E. The neutral atom potentials U* and U* are further specified as point 
charge potentials, which include nuclei and non-valence electrons, and average 
electronic potentials 1 

4 u.*- 
r 1 

1 
rl 

_ _ __  + f [(2s)2 + (2px) 2 + (2py) 2 + (2pz) 2] 

+ f ( l s )  2 lr12 &2.  

1 
dz2 , (3.4a) 

r l  2 

(3.4b) 

The effect of the carbon 1s-electrons is included in the point charge potential. The 
orbital exponents for )~ in (3.3a) and the four orbitals in (3.4a) may have different 
values. 

F. Penetration integrals and kinetic energy integrals are neglected for #, v 
non-nearest neighbors. This is based on the reasonable assumption that these 
quantities decrease exponentially, similar to the overlap integral 

(Q:~v)=(~:##)~.~+(~:#v)M.~ with (~ :#v)=  * * - I X, U~ z~dz (3.5a) 

Q =/~, v or nearest neighbours of # or v 

T,~ = T,u6u~ + T,~M,~. (3.5b) 

The original definition is over sums ~" (4 : #v). 
q 

G. Electronic interaction integrals are simplified according to Mulliken's 
approximation (Mulliken [142], p. 500, 521) 

(~vio~)=�88 (3.6) 

Matrix Elements 

Ruedenberg does not take the self-consistent field operator F a s  H e f t ,  but a 
neutral core operator Hneut r, because the cores are shielded by the other n-electrons 

Uneutr = T +  ~ U* + ~ Co*. (3.7) 
a~C 6'~H 

The matrix elements of this operator are used only for the calculation of the MO's 

H~, utr : T~v-  s (o" : t /y ) -  2 (Q "uv). (3.8) 
~r~C 0~H 

Using (3.5a) and (3.5b) H ~  ut* can be represented as 

H ~  ut* = (a + c5~)5~ + fl M~, (3.9) 

with a mean value of all a,. 

1 Compare Eq. (3.4a) with Eq. (34) of the Goeppert-Mayer-Sklar paper. 
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6% deviation from c~ in a special case 

fl = J" )~(T + 2U~)z2dz. 

If one considers that the eigenvectors of Hneut  r a r e  at the same time eigenvectors 
of S because both operators commute one gets a final form for the energy 

E = Z P.u(a + (5eu) + Z P.~fiM.~ 
B #,v 

.* v (3.10) 

+ 2 u,~ ( P u u - 1 ) ( P v ~ - I ) -  4(P[**+P'u*P'~')- (##1vv) 

with 

P~v = 2 ~ C#i Cvi/Si ~ 
i 

Cui Cvi Si �9 
i 

Basic Quantities 
The remaining quantities to be calculated are: 
S,v = S is calculated theoretically as two-center integral over Slater orbitals in 

elliptic coordinates. 
Tun = Tll in the same way as S. 
Tuv = T12 in the same way as S. 
A simple relation is found between T12, Tll  and S. 
( lc :  11), (2c: 11), (2c: 12), (1n : 11) are calculated in a similar way to S. 
(##[vv) 1. is calculated theoretically in elliptic coordinates. 2. is calculated by 

an approximation formula which is fitted by the spectrum of benzene, because the 
transition energies are dependent only on the differences of interaction integrals 

(##, vv) = A / R ( 1 - e  -~R k~=l ~kRk). 

The orbital exponents ( of (3.3a) and the shielding exponents (c of (3.4a) are 
determined by setting the orbital energy of a neutral carbon atom equal to the 
carbon electron affinity and minimizing this quantity with respect to ( 

0~(01T + U~(r X(r -- - A c ,  
d (3.11) 
d~- (Z(OIT + U*(~c)l){(~)) = O. 

Comments 
Ruedenberg's approach is essentially a topological approach. The effective 

Hamiltonian which is used for the calculation of the orbitals is determined by 
the topological structure of the molecule, which means that one has to know only 
whether an atom is a nearest neighbour to another atom, not where it is located 
geometrically. The model has the advantage of strong relationship between 
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energy and overlap eigenvalues. A similar, but purely analytical approach to this 
problem has been proposed by Lykos and Schmeising [134] and Gilbert and 
Lykos [58]. 

The two kinds of energy terms can be distinguished as due to short range 
forces [T and U] and long range forces [(/2#lvv)]; the former are essentially 
determined by the topology of the molecule (matrix M), the latter are depending 
on the geometry. The energy expression (3.10) gives an interesting aspect. The 
second term in the brackets is a generalization of Pople's result. It suggests that 
the latter is valid only if the eigenvalues s~ of the overlap matrix are all approxi- 
mately equal to unity. 

There seems to be only one inconsistency in Ruedenberg's method. He allows 
the 2pz-orbital in the neutral atom potential to be different from the 2 p z - ~ -  
orbital. In fact, assumption (3.11) might be the reason for the unexpected result 
that the o--orbitals (2s-, 2px- and 2y-orbitals in the neutral atom potential) 
have a smaller shielding exponent than the re-orbital (2pz)2. This means that in 
c - r  c-systems the o--orbitals should be more expanded than the r~-orbitals. 
Ab-initio calculations on C2 suggest the opposite (Ransil [182]). 

4. Berthier' s Method [9] 

Basic Assumptions 3 

A. The method is designed for r~-electron systems. It is flexible enough to 
include hetero atoms with two or zero ~z-electrons. 

B. The atomic orbitals are considered as LiSwdin orthogonalized orbitals. 

S~j  = ~ i j  " (4.1) 

The transformation is given by 

o r  

2~ = zS-1/a 

,li --- Y, (S-1/2), i  z , .  (4.2) 
# 

C. The Hamiltonian for the core is written as 

H .... = I v + U , +  ~ U~ (4.3) 

where U, and U~ are effective potentials of the atoms deprived of their ~-electrons. 
D. According to the number n u of ~-electrons on atom # the integral W, has 

different values 

for {! W ~ = I x * ( T +  U,)zudz = 2 I~, nu= (4.4) 
k - I i -  (##lp#) 

where A, is the electron affinity a n d / ,  an appropriate ionization potential of 
carbon (Berthier et al. [10]). 

2 Some comment on this point in terms of penetration integrals has already been given (Glad- 
ney [59]). 

3 An essential part of the method has been described earlier by Suard et  al. [202]. 
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E. The potentials U~ are expressed by neutral atom potentials and average 
electronic potentials 

U~ = U* - nr - �89 K~)~ . (4.5) 

F. For the resonance integral the "Mulliken approximation" is adopted and 
a correction term eu~ added 

= ~ S,~(~, + ~)  + e.~ fl,~ ~ z (4.6) 

where % and eu~ are given as 

~u = Wu - ~ (a : ##) + n~ (cro-l#p) z - ~- (~r/t[a#) z (4.7) 

e,~ = -kSXu~ (Berthier [8]). (4.8) 

G. The core integrals in the 2-basis may now be written as 

~u ~ = y ,  (S-~/2) ,Q%(S~/2)o~ , (4.9) 
0 

fl~v = 2 (S-1/2)lloF'oa(S-1/2)av 
Q, o (4.10) 

1 

Q 

overlap assumption is taken for the electronic inter- H. Zero differential 
action integrals in the 2-basis 

(#v 10~) ~ = (/,/t [ ~ )  ~ c~u~cS~. (4.11) 

I. The remaining Coulomb integrals are transformed to integrals in the 
z-basis for which Mulliken's approximation (Mulliken [142]) is adopted 

(~vlo~r)~= �88 +(~ml~r~r)~ +(vvlQo)~+(vvl~r,r)q. (4.12) 

The (#/t I vv);' may finally be written as 

(m*lvv) ~= Y~ (S-1/2)~e(Sl/2)ue(QQl~Yff)x(S-1/2),~v(Sl/2)~rv. (4.13) 
O,G 

M a t r i x  E l e m e n t s  

The elements of the SCF matrix may be written as 

1 2  
, , ,  ~ ~ -  SQ~ [(~o~ I ~o o) ;r + (o-o I o-o-) x 

o (4.14a) 

-I-2(Q~~176 (S1/2)eu-t- T uu ~ (S-*/2), ,o(S1/2), ,o(ffOlaa)z(S-1/2),~u(S*/2), ,u 
Q,O- 

o~#  ~,~ 
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(S-1/2).o~o(S1/2)Qv + (S1/2)#oo~Q(S-1/2)Q v 

+ ~ (S-1/2)~o~(S-1/z)~ ~ (4.14b) 
O,O- 

1 
2 G Y~ (s-1/2).~ (s~/2).~ (eel~a) z ( s -~ /2 )~v  (s~/~) . 

If one expands S-~/e and S + ~/2 in a series and restricts oneself to first-order terms, 
the simple relations result 

1 
F~= Wu+ ~_p~ (##[p#)z+ ~ (p~o_G)(aa[##)z, (4.15a) 

1 
F,~ = e,~ - ~ P,Z~(## I vv) ~ . (4.15b) 

Pz is the gross atomic population (Mulliken [143]) if Px and S commute. It has 
been shown (Fischer-Hjalmars [-50]) that this interpretation is correct to the first 
order even if pZ and S do not commute4. 

The total electronic energy may be written as 
1 E = ~ Z Ps (S-I'2)#QO~Q(SI/2)Ov q- (Sl/2)l~O~o(S-1/2)qv 

LO 
-~- E (S-1/2)IzQ~'Q(r(S-1/2)av] (4.16) 

o~r J 

+ ,Ps ~Pu~ 2 (S-1/2),e(S1/e)uo(OQlcr(r)x(S-1/z)~(SX/2)~v' 
Q,(r 

Collecting first order terms from an expansion of S -~/2 and S tie yields 

~ P ~  E =  P.. IV.+~P~.( /q~I / t#)  z + ~ ~ 
~,V 

~ (4.17) 

1 I z 1 ~ 1 + ~ (P[.,- n.) (P;~-nv)-~ ~P[,~-n,n~ (#/zlvv) x . 
Iz, v L 

Basic Quantities 
S~v 1. is calculated theoretically using Slater shielding exponents. 
2. is calculated theoretically by taking the same exponent as for Tzp; this 

quantity and T2~ are calculated by applying the virial theorem to the (1/4, sxyz) 
and (V2, s2xz) valence states of carbon; TI~ has to be known and is assumed to 
be equal to the conventionally calculated value. 

- W ,  is taken as an appropriate ionization potential or electron affinity of 
carbon. 

k shall fit the benzene spectrum. 
((r : ~#) is neglected. 
(##1#/0 x shall fit the experimental value; this yields an appropriate shielding 

exponent. 
(#/~[vv) x is calculated theoretically using the exponent which was yielded 

for (~#1#~) z. 
a For a recent discussion on atomic populations in molecules see Cusachs and Politzer [32]. 
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Comments 

Berthier's scheme was the first complete approach to give a satisfactory 
explanation of the earlier Pariser-Parr method. Although it had become clear in 
the meantime that the orbitals used in connection with the ZDO assumptions 
have to be considered as LOwdin orthogonalized, only the fortunate connection 
with the Mulliken approximation for the original atomic set 5 and the idea of 
expanding the overlap matrix to first order terms has led to this result. The 
inclusion of exchange potential terms, as well as a more general interpretation of 
the integral I/V~, which takes care of the fact that the atomic valence orbitals are 
influenced by the molecular environment (pyrrole or pyridine) gives semiempirical 
methods a better basis. Perhaps relationship (4.8) remains unsatisfactory, because 
k is of the same order of magnitude as c~ u and c~ v in (4.6). The first term is neglected 
in an expansion, whereas the second, although of the same order of magnitude, 
is not. 

5. Other Developments 

Since the scheme for effective Hamiltonian and energy expression has been 
outlined by Pariser-Parr and Pople, it has been essentially changed or generalized 
only a few times. Shortly after those above-described methods had been elaborated 
for unsaturated hydrocarbons, an extension to radicals and ions with an unpaired 
electron was attempted (Longuet-Higgins and Pople [124]). A formalism for 
open-shell systems had been briefly outlined (Pople and Nesbet [173]). The 
Hamiltonian 

paired 1 
U = U  . . . .  -~" ~, ( 2 J o - K Q ) + J ~ - ~ K  ~ (5.1) 

0#a 

which the authors (Longuet-Higgins and Pople) used even for the unpaired 
electron is in fact the Hamiltonian for the closed-shell part in the restricted 
Hartree-Fock form. Calculations were made independently at the same time by 
Berthier [6, 7]. Nevertheless there was much detailed work left to evaluate the 
basic parameters: Zu, Wu, fl, (##IP~), (/tp I vv). 

It was realized that in case of net charges in heteroatomatic systems, especially 
ions, parameters become dependent on the electronic charge distribution. A 
variable electronegativity method was developed (Brown and Heffernan [18]) 
where the exponent Z u is a function of the density at atom #: 

Z u = n u - 1.35 - 0.35 (N~ + P~).  (5.2) 

The basic integrals, especially W u and (#/t[/t#), become, as functions of the 
orbitals, functions of the electronic distribution. 

Recently there was proposed as alternative a variable core method (Nishimoto 
[150]) which together with the earlier variable fl method (Nishimoto and Forster 
[152]) and the improved method for the calculation of electronic repulsion 
integrals (Nishimoto [148, 149]) completes a new scheme. The latter method 
distinguishes between upper-upper and upper-lower interaction in molecules. 

5 The equivalence of Mulliken approximation for AO's and ZDO for OAO's has been pointed 
out first by LOwdin [126]. 



106 K. Jug: 

For many purposes the older version (Nishimoto and Mataga [151]) which 
generalizes Pople's idea (2.3) seems to be sufficient. 

1 
(P#I v v) = - - ,  (5.3 a) 

a + R.~ 

(##1#/~) = --1 = I - A .  (5.3b) 
a 

The results reported for many cases are satisfactory, and the formula is perhaps 
better than Pariser-Parr's quadratic formula. This might be due to the fact that in 
configuration interaction calculations the steeper decrease of the two-center 
integral in the Nishimoto-Mataga form gives a larger expression of correlation 
effects (Kouteck3) [111]). 

Another explanation has been given by Little [121] who shows that the 
Nishimoto-Mataga formula works well for n-electrons because it represents 
quite well the Coulomb interaction which is partially screened by the collective 
motion of the n-electrons. The author describes a procedure for a better approxi- 
mation. 

A method where deviations from reference values for W,, fl~v and ?,~ are 
measured by changes of a reference bond distance has been proposed by Roos 
and Skancke [183]. The bond distances are related linearly to bond orders Puv. 

About the one-center electronic repulsion integral (/~#1##) there has been 
much discussion. The theoretical value calculated by using Slater's shielding 
exponents (16.93eV) deviated considerably from the "experimental" value 
(10.53 eV) calculated by the difference of ionization potential and electron affinity 
I - A. This formula was derived by a 2C--* C § + C- type reaction (Pariser [159]). 
A generalization has been given for other reaction types (Paoloni [158]). Many 
explanations have been given in the meantime based on correlation considerations 
(e.g. Kolos [108], Arai and Lykos [4]). More recently it has been pointed out 
that the integral (#g I##) which is involved in the above mentioned reaction 
type has to be ascribed to the negative ion C- (Hermann [79] ; Orloffand Sinano~lu 
[157]; Anno [3]). In consequence it has to be compared with the theoretical 
value derived from C- (12.72 eV). The occurance of a C--type one-center repulsion 
integral may be explained by assuming that it accounts for ionic structures. 

Whereas all these explanations are based on atomic definitions of a "valence 
state", this is not the case for another approach (Silverstone et al. [192]). The 
authors define valence state in a molecular environment by collecting terms 
which belong to one atom only from a molecular expression. This procedure yields 
an electronic repulsion term involving a 2pn-orbital which did not occur in the 
earlier version (van Vleck [205]). Minimization of the valence state energy yields 
shielding exponents strikingly different from the Zener-Slater values (Zener [213], 
Slater [197]) and allowing the 2pa- and 2pn-orbital exponents to be different. 
Considerations have been made for ground and excited states and ions of carbon 
in n-electron systems (Silverstone and JOY [193] ; Joy and Silverstone [95]). The 
authors hope that considerations based on a minimization of the total energy 
expression of the molecule may later justify their procedure. 
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The difficult choice of parameters has led some authors to investigations how 
certain parameters affect the values of molecular quantities (Chiorboli et al. [20] ; 
Flurry and Bell [52]). In heteroatomic systems charge densities and orbital 
energies may vary considerably dependent on the choice of W, and ~uv values. 
Even term crossings may occur. 

In spite of the success of the g-electron approximation in many cases, there 
remains the question whether the a -  g separability conditions (Lykos and Parr 
[-133]) are actually fulfilled. Recently some doubt was raised in connection with 
this question (Moskowitz and Barnett [141]; Schulman and Moskowitz [190]). 
It has become obvious that a-orbital terms are embedded between g-orbital terms 
in ring systems. In addition, it seems unlikely now that charge distributions and 
dipole moments calculated in the g-electron approximation may be interpreted 
as due to g-electrons only. Calculations indicate that there is implicitly an influence 
of the a-electrons involved (Veillard and Berthier [204]). This is substantiated by 
some ab-initio calculations (Diercksen and Preuss [42]; Preuss and Diercksen 
[-180]; Clementi et al. [24, 25]). Sometimes the influence of the a-electrons is 
difficult to predict; e.g. in pyridine the dipole moment seems to be primarily due 
to the a-electrons, not to the g-electrons as has been assumed earlier. Despite the 
limitations of the ~z-electron approximation, some justification can be given for 
the above described methods, which is done more in detail in the following chapter. 

IlL Justification of the Zero Differential Overlap Assumptions 

1. The Zero  Differential Overlap Assumptions 

SuXv = ~,v, (l.1) 

H . . . . .  )" r 0 (1.2) /~/z 

H~ ~ r 0, for #, v nearest neighbours (1.3) 

H ..... ~ = 0 otherwise (1.4) 

In Eqs. (1.1)-(1.5) the superscript 2 indicates that the basis for the matrix 
elements is supposed to be different from the usual atomic orbital basis {Z}. 
Sometimes this difference has been overlooked and in consequence the ZDO 
assumptions were found to be unreliable (Coulson and Schaad [29]). Note that 
the ZDO assumptions were originally given in~ the differential form (e.g. Parr 
[-1641 ; Pariser and Parr [161]). The differential form is not only mathematically 
inexact for the conventional AO's but completely unnecessary in a theory where 
only integrals are required. 

Recently, however, there has been drawn attention to the fact that ortho- 
gonality alone, e.g. between 2s- and 2p-orbitals, might not be a sufficient basis 
for the introduction of ZDO in electronic repulsion integrals, but the orbitals 
have to be localized and non-overlapping like the four sp3-hybrids (Cook et al. 
[26]). This gives support to the old idea of zero differential overlap. 

A completely new interpretation of ZDO is suggested by Weare and Parr [207]. 
This interesting method is based on cut-off orbitals and would allow an un- 
8 Theoret. chim. Acta (Berl.) Vol. 14 
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approximated application of ZDO in the differential form. The method might 
become attractive if a recipe for the difficult boundary conditions can be found. 
The cusps have to yield non-vanishing fl-values (see e.g. Ohno [153]). 

2. Orthogonalized Atomic Orbitals 

After the introduction of the ZDO assumptions into the MO formalism 
many authors (Fumi and Parr [56] ; L6wdin [126-128, 130]; McWeeny [138, 139] ; 
Parr [165]; Lykos [131]) have pointed out that it might be preferable to use 
symmetrically orthogonalized atomic orbitals (L6wdin [125]) instead of the 
purely atomic basis set 6: 

2 = •S -1/2 (2.1) 
o r  

;ti = Z (S-1/2) . iZ~ �9 

The notation implies that s and Z are row vectors. Although some of the above- 
mentioned authors have given reason for the justification of the ZDO assumptions 
when using an orthogonalized basis set, only recently a systematic treatment has 
been carried out (Fischer-Hjalmars [49, 50]) and more general applications have 
been performed (Adams and Miller [1]). When the orbital basis is subjected to 
the transformation (2.1) the matrices of one-electron operators will be trans- 
formed as follows 

M ~ = S-1 /ZMS-1/2  (2.2) 
o r  

M L  = (s -1 /2) , i  (s-1/2)  M0 �9 
l,J 

The matrices of two-electron operators can be transformed easily if one considers 
the electronic interaction as an interaction between two one-electron charge 
clouds which are transformed according to (2.2) 

~,~'=Jl, t ~=S-1/2~'~S -1/2 with Q/j=Z*Zj. 
Introducing a matrix (12112) with double indices 

(f21 t2)i~.k, = (f2~t f2k,) (2.3) 

the transformation of the matrix elements yields 

(~'~Z l ~'~)~) = (S-1/2 ~ S-1/2 I S-1/z ~r~S-1/2) (2.4) 

o r  
( #VIO0")2 = E (S-1/2)# i (S-1/2)vJ (S-1/2)Q k (S-1/2)al (ij/kl). 

i , j ,k , l  

The overlap matrix S -1/2, and as sometimes needed S +1/2, may be expanded in 
terms of S as 

S-1/z  = 1 + �89 - S) + 3(1 - S) 2 .... (2.5a) 

S +1/2 = 1 - �89 - S) - ~(1 - S) 2 . . . .  (2.5b) 

6 It is interesting to notice that OAO's have been used first in the valence bond method (McWeeny 
[136, 137]). Also a kind of equivalent orbitals with localization properties have been used (Hall [64]). 
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It might be worthwhile to remember that the expansion is obvious only in the 
L6wdin definition of the overlap integral (LSwdin [-125]), but looks somewhat 
artificial in Eqs. (2.5a, b) where the generally adopted form of S is used. 

Following the pattern of a recent review (Fischer-Hjalmars [49, 50]), let us 
consider the case of hydrocarbons with approximately equidistant atoms and let 
us use the notation 

S/&s+ 1 = S 1 

Ss, s+ 2 = $2 = O(S 2) 

Ss,.+.~ = $3 = O(S 3) 

for p,/~ + 1 nearest neighbours, 

for #, # + 2 next nearest neighbours, 

for #, # + 3 non-next nearest neighbours �9 

(2.6) 

In this special case and under the neglection of third order terms O(S~) the matrices 
of the one-electron operators may be written as 

Ssv=(~sv.+.Sl(6s, v_lJr(~g,v+l)JFS2((~#,v_2J~-(~s,v+2)+O(S3), (2.7) 

(~$1 - ~$2) 3 2 _ � 8 9  ' +Ss,~+i)  + 3 2 i (S-X/2)u v = (1 + gSt)fs~ ~-t 
x (5,~,~-z +5u,~+2)+0(S~),  (2.8a) 

(Sl/2),~=(1 i 2 i - -  -t- i S 1  (•u,v_ 1 -}'- 
~ _ ( _  1 2 l ~-$1 + ~$2) (a,,~- 2 + 5~,~ + 2) + 0($3),  (2.8b) 

3 2 1 
M;Zv (1 + 2 -S1 )Msv  , Mu,,+I) = - ~SI(Ms-I,~ + Ms+,,~ + M s  ~ - t  + 

1 2 + gSl(M,-1,v-1 + Ms-l,v+l + Ms+l,v-1 + Ms+l,v+l) 
+ 

(2.9) 
3 2 1 (gSa -~-$2)(Ms- 2,~ + Mu,~- z + Ms,~+z + Mu+z,~)+ O(S~). 

The matrices (~2x112 ~) are not given here because the formulas are much more 
complicated and they are needed only in special cases. The reader may derive 
them by inserting (2,.9) into (2.3) and neglecting terms of higher than second order. 

By inserting (2.8a) into (2.1) we can make an interesting statement about the 
new basis ~: 

~-~ 3 2 3 2 ,t, (1 + ~ s , ) z , -  � 8 9  + z,+,)  + ( ~ &  - { & )  (z,-~ + z , + 9  ... (2.1o) 

The local character of the AO basis set Z is preserved in the OAO basis set 2 
(McWeeny [140], Fischer-Hjalmars [49, 50]). 

3. Construction of the SCF Matrix  

Let us use the following notation 

H ....  = T +  ~ (U* - nuJsu ) (3':1) 
# 

where U* is a neutral atom potential, n s the number of n-electrons contributed by 
atom # and Js, the Coulomb operator. Application of Eqs. (2.7)-(2.9) yields in 
connection with Ruedenberg's approximation Ts~ 2 = Ss~ Tss the matrix elements 

8* 
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which enter the SCF matr ix  in the second order  approximat ion  as follows 

Ts = (1 + 2S~) Tu. + O(S~), (3.2) 

T.~..+ ~ = T.,.+~ - S~ T . .  + O(S~), (3.3) 

(̀ U : ̀ U ,U)~ = ( I +-~ S~) (,U : ,U ,U)- 2SI(,U : #,,U + I ) + O(S~), (3.4) 

(,U + 1 : `U`U)x = (̀ U + 1 : `U,U) - S~(~" ,U, ,U + 1) + �88 : ,U`U) +O(S~), (3.5) 

(`un : ,U`U) z = (,un : ,U`U)+ O(S~), (3.6) 

(,U :,U, ,U + 1) x = (̀ U : ,U, ,U + 1 ) -  �89 : ̀ U,U) +O(S~),  (3.7) 

(,u,ulv~,)~=(,u,ulvv)+ S~[(,u`ulvv)-(,u,ulv + a, v + l)] + o(s~) ,  (3.8) 

Integrals which are not  among those in (3.2)-(3.8) vanish in the second order  
approximat ion.  

Now we are able to write down the expansion of the various integrals (1.1)-(1.5) 
in terms of $1 and $2. 

Eq. (1.1) must  be obviously fulfilled in the {2}-basis to any order  of $1. 
Eq. (1.2) becomes 

H ~  re 'x= Wu~-(nu-1)(,U,UI,U,U) ~ -  ~ nv(`u,u[vv)X+O(S~) (3.9) 

where 

W2 = Tu~, - (,U : ,U,U) ~ - (,U,U ]̀ U`U) ~ - (̀ U - 1 : ,U,U) x - (,U + 1 : ,U,U) )" - (`U. : #,U) x. (3.10) 

Expression (3.10) differs f rom the usual expression for Wu by the inclusion of the 
three nearest neighbour  penetra t ion terms (Fischer-Hjalmars [501). The nota t ion 
has the advantage that  no penetra t ion integrals are explicitly needed in calcula- 
tions. In addition, it shows strikingly that  there is no essential difference between 
semiempirical methods  which neglect penetra t ion terms in H ..... a or  keep them. - - / l , u  

It is just a mat ter  of  different parameter  values for 14/,. The  same idea was ex- 
pressed earlier wi thout  specifying a value for W, (Brickstock and Pople 1-15]). 

If we define W u accordingly 

w .  = T . .  - (,u : ,u,u) - (,u,u I , u , u ) -  (,u - 1 : , u , u ) -  (,u + 1 : ,u,u) - ( , u . :  ,u,u) (3 .11 )  

then W, may be expressed as 

W~ = W .  + nS 2 [Tu .  - ~ : # # )  - }(##I`U#) + �89 Ì U + 1, `U + 1)3 
+ 2nSI(`U : #, # + 1). 

(3.12) 

Here the generalizat ion has been used that  a tom/~ has n instead of two nearest 
neighbours  with n-electrons. Fo rmula  (3.12) reduces to Fischer-Hjalmars Eq. (39) 
if we assume (#:`U, # + 1) is a term of second order  in compar ison  to (`U:##). 

Sometimes the expression T u , - ( # : # # )  is considered as the electron affinity 
of a tom Ù (Ruedenberg [187];  Fischer-Hjalmars  [50]). 
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That this is not justified is shown in a table 7 of one of the authors (Fischer- 
Hjalmars [49]) and may lead to irrelevant results for the o--electrons (Ruedenberg 
[187]). Whereas Fischer-Hjalmars formula (40) suggests that I W,~l > JWu[, formula 
(3.12) might rather yield IWr < IWul. This is substantiated by calculation using 
values for the various parts of We and IV, from a table of Fischer-Hjalmars [49]. 
Eq. (l.3) becomes 

~/core, 2 ), = T~,~+I-  ~ : # ,#  + 1 )~- (#  + 1 :# ,#  + 1) ~ (3.13) * * # , p + l  

This equation emphasizes the importance of penetration terms in theoretical 
calculations being by no means negligeable but of the same order of magnitude 
as T~, u + 1. The matrix elements H ..... z where #, v are non-neighbours only contain - - / i v  

terms of third and higher order. Thus (1.4) is fulfilled to the second order. 
In conclusion we may say that to the first order in S 1 all remaining basic 

quantities are independent of the surroundings. If we include second order terms 
all integrals except Wu, because of the flexible number n of neighbours with 
z~-electrons, remain transferable. To a large extent, the success of the Pariser-Parr- 
Pople theory is due to the local character of the basic quantities in the OAO basis. 

For  the homonuclear case it has been demonstrated (Fischer-Hjalmars [50]), 
that Eq. (3.13) may be reformulated to reproduce to the first order the "Mulliken" 
and to the second order the Ruedenberg approximation for fl (see Parr [166], 
p. 100). But in any case, one has to be careful, because the matrix elements Tu, u+ 1 
as well as (# : #, # + 1) have opposite sign in the {2}- and {x}-basis. Only the sign 
of the quantity H., .+I  = Tu, u+I + 2(# : #, # + 1) remains unchanged under a 
transformation from one basis to the other. 

Finally we are able to write down the matrix elements of the Fock operator as (1)  
Fuu= We+ 1 -  ~ - n ,  (##l##) ~ -  ~ -Q, (##I##)  - ~ Q ~ # J v v )  ~, (3.14a) 

vr 

Fa = Hoore, z _  __1 pXuv(##lvv)Z (3.14b) 
- . v  - - . ~  2 

where the definition of the atomic net charge has been used 

Q~ = nu - PI~' (3.15) 

In (3.14b) the first term on the right hand side will vanish if 

v # # + l , # - - l .  

4. The Hiickel Method 

The Hiickel method which is nowadays a familiar tool for every spectroscopist, 
has been developed at an early stage of MO theory (Hiickel [87-89]). Its simple 
form has significant features which are based much more on intuition than on 

7 The author appreciates a remark by Prof. Fischer-Hjalmars that the resulting large difference 
of 10 eV is decreased by the inclusion of one-center exchange integrals. It remains, however, by an 
order of magnitude larger than the experimental electron affinity of carbon. With respect to the 
relationship between W z and W it has to be added that in this case also other third order terms have 
to be included, 
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mathematical justification. With increasing popularity, explanations have been 
given for its success. As the electronic repulsion is not explicitly taken into 
account, the simplest assumption would be that Heff [(3.2), chapter I] might be 
identified with Hr But as soon as one realizes the importance of electronic 
repulsion for orbital energies and spectra, one is forced to assume that some 
average electronic repulsion is involved in the choice of parameter values. 

As the one-electron model yields the SCF operator as optimal for the solution 
of the SchrSdinger equation, an interpretation of Heff in the Hfickel theory as the 
SCF operator presents itself as an obvious choice. 

If we compare the Hfickel equations 

neighbours 

(o~, -- el)cui + ~ fluvc~i = O, # = 1 . . .  n (4.1) 

with Eq. (3.2) of chapter I and take H~ff - F, we have to put 

spectr ), ~u = F~,, (4.2a) 

fl~ectr = Fr if/~, v nearest neighbours, (4.2b) 

flspootr = 0 otherwise (4.2c) 

If we have reason to assume that semiempirical ~- and fl-values for nearest neigh- 
boursareclosetothevalues of Fr and F~, the results for physical quantities which 
depend on eigenvalues and eigenvectors of the SCF operator should be sufficiently 
good. Some explanation is needed for Eq. (4.2c). From the previous chapter we 
know that for non-nearest neighbours the core part of Fr in (3.14b) vanishes in 
the second order approximation, but the term - � 8 9  vv) is left 8. This term 
is usually assumed to be small. 

For alternant hydrocarbons it has been shown (Pople [171]) that the following 
relation between the Htickel parameter ~ and various integrals in the ZDO 
approximation is valid 

0 a. - W, + �89 (4.3) 

where the superscript 0 indicates an atom # with net charge zero. If there is more 
than one electron on atom/~ this can be generalized by using (3.14a) 

0 ~u = W~ + (1 - �89 �9 (4.4) 

If there is a net charge on atom # this can be taken into account by putting 

~u = ~u ~ - �89 " (4.5) 

It has been pointed out (Fischer-Hjalmars [49, 50]) that this equation gives an 
explanation for the relationship of the og-technique 

~, = so + oflO Q,  . (4.6) 

A comparison of (4.5) and (4.6) yields 

o~ = -~/~l##)/(2fl~ (4.7) 

s In the following we do not keep the superscript 2, although all quantities are still considered 
on this basis. 
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It may be noticed, however, that with increasing net charges on the atoms the 
method becomes less reliable becat/se the constancy of c~ is no longer guaranteed. 

On the other hand, if one is interested in preserving the additivity of the Hiickel 
energy 

Eureka1 = 2 E 8  i (4.8) 
i 

the parameters have to be chosen differently (Mulliken [142]). They may be 
taken as (McWeeny [140]) 

ot~d ~,spectr 1 1 -- --, - ~-Puu(##]~/0-  ~- ~ P~(#~lvv), (4.9a) 
v~/t  

fl~d = B sp~ctr 4- 1 ~ e , ,  ( ] ) (4.9b) _ v v  

where ~spectr and /3 spectr are defined by (4.2). Whereas the non-diagonal elements ~ / t  r - / t  

are only slightly different from each other, this is not the case for the diagonal 
elements. 

speetr and One can easily understand the different choice of parameters e. 
and ,..,t~ ~pe~tr resp. euae and fl~ if one reformulates the energy expression 

1Z + F.O 
E =  2. ,~  

= ~ P.~ ~ -  ~-Gu~ (4.10) 
/t, v 

oCC 

= 2 

with 
a d  ~ rreff ,  ad 

~'i - -  ~,Cil~Civl"l~v , 
~t, v 

1 
H e  ff, ad ~ F/~v _ a/zv 

//v 2 -  - 

To have a better comparison between molecules With different cores, some 
authors have preferred to add the repulsion energy between positively charged 
cores to the total energy (Pople [171]; Del Re and Parr [38]; Fischer-Hjalmars 
[50, 51]): 

Etota  I ~--- Eelec t r  q- Erepu l s  . 

As the cores are not bare nuclei, but consist of nuclei and o--electrons, it has been 
proposed to consider the Coulombic part of the core-core interaction as a hole- 
hole interaction and to write it in the form (Del Re and Parr [38]): 

1 
Erepuls= 2 - E nun~(g#lvv). (4.11) 

We may use (4.11) to define a new Hat by the relation 

Etotal  = E P . ~ H ~  f f "  (4.12) 
/t,V 
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It is, however, arbitrary how to divide the various parts of the energy to form 
matrix elements H~ e. An interesting way to do it has been proposed by Fischer- 
Hjalmars 1-51]: 

1 1 -Here'---u# -- W.+ ~Puu(#~L##)+ ~ Q J P . u  ~ Q~(tyaL##) (4.13a) 
a4:it 

Hueff /~speetr .4_ 1 =,-#~ _ -~ P,~(##lvv). (4.13b) 

A comparison of (4.9) and (4.13) shows that the non-diagonal elements of Hefe 
with and without core-core repulsion are the same whereas the diagonal part of 
(4.13a) is much more localized than of (4.9a). This localization effect may justify 
the procedure. On the other hand, the author wonders, whether the core-core 
repulsion is not better interpreted as a bonding part and has to be integrated 
into the non-diagonal part of the effective Hamiltonian. Nevertheless, the dis- 
cussion about the effective Hamiltonian defined by (4.12) should not be over- 
emphasized, because this Hamiltonian is not the one to determine the molecular 
orbital coefficients. It has been pointed out (F. Harris 1-74]) that once an effective 
Hamiltonian, which is dependent on charge distributions, is given according to 
(4.12), the eigenvectors for the MO's have to be determined by an operator F 
which is derived from Her f by 

Fur = Heff  4- t~Heff 
--u~ - X Po~ ---e,~ (4.14) 

~,o ~P.~" 

In the above mentioned case, the proper operator for the MO's is still the SCF 
operator, whether the effective Hamiltonian contains core-core repulsion or not. 
The reason is that the core-core repulsion energy does not depend on Pu~" 

A simpler way to correct the energy expression for Hiickel calculations may 
be derived in the following way. We divide the total energy into 

Etota I = EHiicke 1 q- AE (4.15) 

where EHOr contains the SCF part 

Enar = ~ P,~F~,~ (4.16) 

and AE the difference between core-core repulsion and electronic repulsion 

1 ! ~ P.~G~,~ (4.17) AE = ~ ~, n~,n~(l~#lvv ) -  2 u~ 
,tt~v 

Using the ZDO assumption for Gu~, E may be reformulated as 

u~  (4.18) 
1 4- -~ ~ (n#n~-- PuuP~)(##lvv). 

.tt, V 
. U ~ V  
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In many cases, it might be reasonable to assume the last term to be small, 
so we get 

1 [ ~  p~,(/~/~]##)_ y, P:v~#[vv)] (4.19) 
/L~V 

#g:v 

The first term represents an atomic contribution, the second a bonding part. 
Presumably the first term is larger. How small AE in (4.19) is depends on the special 
molecule. But anyway, it should be reasonable to compare total energies in classes 
of molecules where this term is approximately constant. 

Another interesting discussion on the total energy expression has been given 
by Fukui and Fujimoto [55]. The authors apply the Mulliken approximation to 
the electronic repulsion integrals and collect intra- and inter-atomic terms. 
Within reasonable approximations they are able to explain that the resulting 
correction term AE is independent of the nuclear configuration. Some remarks 
have been given on the difficulty of representing H as a sum of one-electron 
operators. 

IV. All-Valence Electron Treatment 

1. Hoffmann's Method [83] 

Basic Assumptions 
A. All valence electrons are treated explicitly, only the Is-electrons of carbon 

(or hetero) atoms are contained in the core. 
B. All overlap integrals are calculated. 
C. The Hamiltonian remains undefined. Its diagonal matrix elements are 

considered as semiempirical quantities. 

Hu eff = ~u (1.1) 

D. The non-diagonal elements are approximated according to a generalized 
"Mulliken" form (Wolfsberg and Helmholz [209]) 

e f f  1 H;v - zK(~.  + ~v)S.v. (1.2) 

The total energy 9 is considered as a sum of the eigenvalues of Hef t and can be 
formulated with assumptions (1.1) and (1.2) as 

O C t  

Etotal = 2 ~i 
i (1.3) 

= ~ N,, + (K - 1) (N,, - P,u) eu 
# 

where N,,  = ~ PuvS~ is the gross atomic population (Mulliken [143]). 
Y 

Basic Quantities 
Suv calculated with Slater orbitals. 
% valence state ionization potential. 
K is chosen as 1.75. 
9 For a discussion see Fukui  and Fujimoto [55]. 
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Comments 

The increasing difficulties in the reliability of improved Hiickel theories for 
r~-electron systems has finally led to a scheme which includes all valence electrons. 
One may wonder why it took so long to free the Hfickel scheme from its obvious 
limitations: the restriction to planar unsaturated hydrocarbons and ZDO 
assumption for the overlap integral. In spite of many weak points of the extended 
Hfickel theory like different parameter choice for excitation energies and total 
ground state energy, overemphasis of steric repulsions, or difficulty in predicting 
polarization effects, one should not forget the tremendous impulse which the 
work had on ab-initio calculations. The final breakdown of long believed n-electron 
theory assumptions was the discovery that a-electron levels are embedded between 
n-electron levels in benzene. Treating the n-electrons apart was based on the 
assumption of a considerable energy gap between a- and n-electrons so that 
moving of the n-electrons would not influence the a-electrons very much. From 
the energy level arrangement of the extended Htickel method, however, one 
might expect a-rearrangement effects with n ~ n* excitation lo. 

From the discussion in the previous chapter, it should be possible in extended 
Hiickel theory to compare ground state energies in related molecules. 

2. Pople's Methods [176-179] 

a) Complete Neglect of Differential Overlap (CNDO) 

Basic Assumptions 
A. The method is designed for first row elements. All valence electrons are 

treated explicitly, only the is-electrons of carbon (or hetero)atoms are contained 
in the core. 

B. The ZDO assumption is adopted for the overlap integrals 

S,~ -- ~,~. (2.1) 

C. The Hamiltonian operator is given as 

H = T + U . +  ~ U S (2.2) 
Br 

where U A and U. are the effective potentials resulting from atoms A and B. 
D. The core integrals are divided into two categories given by the condition 

that # and v belong to the same atom A or not. In the first case it is assumed 

* (2.3) Szu(T+ UA)X~& = if /~ 

The assumption for/z r v is justified by symmetry only, if X, and )G are s-, p- or 
d-orbitals, but not for hybrids. The case where/~ and v are on different atoms is 
treated under G. 

E. The ZDO assumption for the interaction of electronic charge distributions 
on atom A with the core of atom B is adopted. To preserve invariance of those 
core integrals under rotations of local axes and hybridization it is assumed that 

10 A comment  by Prof, R. G. Parr has led the author  to this more specific formulation. 
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the integrals are independent of the kind of orbitals, dependent only on the nature 
of atoms A and B 

S X, UB)~dz = - UAB6,~, p on atom A . (2.4) 

F. Under those simplifications ~u and flu~ with kt, v on the same atom A may 
be written as 

(X#= W u-- E UAB' (2.5) 
Bg:A 

fl,~ = 0. (2.6) 

G. For #, v on different atoms A and B it is assumed 

fl.~ = fl~ a S.~ (2.7) 

where fl~ B is dependent only on the nature of atoms A and B. 
H. The ZDO assumption is adopted for electronic interaction integrals. To 

preserve invariance of these integrals under rotation of local axes or hybridization 
it is assumed that they depend only on the nature of the atoms to which the orbitals 
)~ belong. This is important in cases where more than one electron per atom is 
contributed to the system. 

(/-t v ] ~0 o') = ];ABbu~ fie,, # c A ,  Q~B.  (2.8) 

I. Later (Pople and Segal [178]) the core potential UAB is approximated by 

UAB = ZBTAB �9 (2.9) 

Matr ix  Elements 

The matrix elements of the SCF operator can be written as 

F.. = % +  P ~ -  5-p.. 7AA+ (P..~A.-- U~.) CNDO/1, (2.10a) 

{ 1 t 1 (I, + A.) + (PAA - -  ZA) - -  ~- (Puu -- 1) ~?AA F . . -  2 

+ Z (PBB--Z,)VA,, 
BCA 

1 
Fur = f l~  - ~ Pu~TA, (2.10C) 

with PAA = ~A p~, total valence electron density on atom A. The total energy 
v 

including nuclear repulsion is given as 

E =  E EA~- E EAB (2.11) 
A A<B 

with 

21 ,,~A( 2-1 2)  - - Z  P . u P ~ -  

1 2 
EAB = ~A ~B (2"tlVf~/LV 7 -2 P~v)'AB 

+ (ZAZBRA~ - PAA GAB -- eBB UBA -~- PAAPBB~AB) �9 

CNDO/2 (2.10b) 



118 K. Jug: 

For large internuclear distances the quantities approximate to RAg, so that the 
last group of terms become 

QAQBRA d with QA = ZA - -  PAA" 

Basic Quantities 
S,~ calculated theoretically. 

= f s](1) ~ sZa(2)dzl dzz, calculated theoretically. YAa 
J /'12 

= ~ sZ(1) ~ s2(2)dz1 dr z calculated theoretically. YAB 
./ ~'12 

UAB = / S2(1) Z B  dzl, calculated theoretically. 
t~ 

J riB 

Wuuis taken from observed atomic energy data 

--I• = W # + ( Z A - - 1 ) ' ~ A  B CNDO/1 

- ( I .  + A.) = W. + (ZA- �89 CNDO/2 
= 1  0 0 .  ~(flA + flU), flO, flO are chosen empirically to give the best overall fit 

with accurate LCAO calculations. 

b) Neglect of Diatomic Differential Overlap (NDDO) 

Basic Assumptions 
A. The same as Aa. 
B. The same as Ba. 
C. The same as Ca. 
D. The core integrals are divided into two categories given by the condition 

that # and v belong to the same atom A or not. In the first case all integrals are 
treated explicitly 

S z*(T+ UA)Zvdz = Way. (2.12) 

E. The same assumption is made for the interaction of electronic charge 
distributions on atom A with the core of atom B 

I Z* UB)~,dz = - U,~,B, l~, V on A. (2.13) 

F. Under these assumptions eu and fl,~ with #, v on the same atom may be 
written as 

eu= Wu,-  Z Uuu,,, (2.14) 
Bg:A 

flu~= Wu~- ~" U,~,,. (2.15) 
B*A 

G. The same as Ga. 
H. All two-electron integrals which depend on the overlapping charge 

densities of basic orbitals on different ~/toms are neglected 

(#AVBIQCaO) ----- ~Vl~a) 5ABfC~ �9 (2.16) 
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Matrix Elements 
In this case the matrix elements of the SCF operator cannot be simplified 

much 

Fur ~uq- EAPQ~f(Ja#'q a ) 1 (#a  [ Q/2)} = - + ~ ~BPo~(la#J~a ), (2.17a) 
O,a 1,. BCA Q,a 

Fu~ = f l u , +  ~:APo~ (#v]ea)- ~(~vl~v) + ~ Po.(ItvlQa), (2.17b) 
Q,a BCA Q,a 

#, v on A,  

F.~ = f l . ~ - i  ~A ~B P ~ a l  ~ v ) # o n A ,  v o n B .  (2.17c) 

The total energy including nuclear repulsion can be derived from 

2 2  Pu~Vu~+Enucl Etmal= 2 U,v 

Basic Quantities 
There is no discussion how to choose the quantities which occur in this method 

in addition to those of the CNDO method, especially the most general form of 
two-center electronic interaction integrals. 

c) Intermediate Neglect of Differential Overlap (INDO) 

Basic Assumptions 
A. The same as Aa. 
B. The same as Ba. 
C. The same as Ca. 
D. The diagonal core matrix elements are calculated by separating the inter- 

actions of the Z centered on atom A with the core of A and with the other atomic 
cores 

c~, = W u , -  ~ ZB?AB. (2.18) 
B4=A 

E. The non-diagonal elements fi,~ with ~t, v on the same atom are 

fiu~ = W~. (2.19) 

F. The two-center core matrix elements are treated as in the CNDO method 

1 0 fi,~ = ~(fiA + flO)Su~. (2.20) 

G. The two-, three- and four-center integrals are set equal to zero unless 
/~ = v and ~ = a. All one-center integrals are retained. 

(]~APC[QBO'D) : ~)ABt~ACt~BD if A r  B. (2.21) 



120 K. Jug:  

M a t r i x  E lemen t s  

With these assumptions the matrix elements of the SCF matrix may be written 

/7.. = Wu.+ ~ A p ~  (,uul0a)_ ~-(~trlQ#) + ~ (Paa--ZB)TAB, (2.22a) 
O,a k B~eA 

F.~= W. ,+  2APo,~ (#VlOa)-- ~ ( ~ a l O V )  , #, V on A, (2.22b) 
~0, O" k 

F.~ = 1 (flo A + flO) S,~ _ Pu~TAB �9 (2.22C) 

From these expressions the total energy may be derived according to 

Etotal=12 p~vFuv+Enucl 
1~gV 

Basic  Quant i t ies  

(ss lss)  ---- ( s s l x x ) =  F ~ = ;~AA 
( sx l sx )  =-~G1 1 
( x y l x y )  = 3 FZ 

( x x l x x )  = F ~ + 2~F 2 
( x x l x y )  = F ~ - 2 F 2  

F ~ is evaluated from Slater type orbitals 
as in the CNDO method. 
F 2 and G 1 are determined semiempirically 
to fit atomic experimental data. 

W.u is treated semiempirically by subtracting electronic interaction terms 
from the mean of the ionization potential I and electron affinity A of appropriate 
atomic states; they are different from those in the CNDO method because of 
various types of interaction integrals. 

W.~ is derived from orbital electronegativities. 

Comments 
After the obvious failure of the n-electron approximation in many cases, 

Pople and coworkers have finally offered three choices to overcome this difficulty. 
The approximations are along the lines of an earlier paper (Pople [171]): the 
ZDO assumption and the point charge interaction. But a full valence electron 
treatment causes a serious problem. Approximations for the various electronic 
interaction integrals and some core integrals have to fulfill certain invariance 
requirements concerning rotation and hybridization. Pople and coworkers have 
required that those integrals are dependent only on the atoms A and B, not on the 
special orbital. This implies the equivalence of all 2s- and 2p-orbitals on one atom 
in a molecule. CNDO calculations indicate that this might be a serious restriction 
in aromatic systems (Del Bene and Jaff6 [35]). The author has shown that 
different shielding exponents are compatible with the invariance requirements 
without introducing stronger postulates than Pople et al. did. However ZDO can 
only be partly preserved, namely for orthogonal hybrids, each of which is composed 
of 2s- and 2p-orbitals with the same exponent (Jug [96]). Part of these conse- 
quences, namely different values for fl~ and fl~ have already been used (Del Bene 
and Jaff6 [35, 36]). 
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The author does not share the pessimism of a recent paper (Cook et al. [26, 
27]) in which the CNDO method is found to be completely unreliable, and only 
the NDDO method is considered as a proper choice, because only the latter 
one has implicitly the features of an OAO basis together with localization proper- 
ties. A careful parameter choice may reveal some justification for the CNDO 
method. In any case, there is some hope that the INDO method is sufficiently 
good to give reliable qualitative results. 

The CNDO method has been analyzed recently on the basis of orthogonalized 
atomic orbitals (Dahl [33]; Dahl and Ballhausen [34]). It has been found to be 
linear, correct to the first order in the interatomic overlap integrals. The case of 
more than one orbital per atom was studied and the general applicability of the 
ZDO assumption to two-center exchange distributions questioned. The authors' 
argumentation against the NDDO method cannot be followed completely, because 
they do not distinguish carefully enough between different orders of magnitudes 
of integrals. 

3. Other Developments 

Calculations on molecules with a-bonds have been based earlier on a concept 
by Lennard-Jones [116]. The idea that the energy is invariant under a trans- 
formation of the occupied orbitats among themselves has led to a series of papers 
on equivalent orbitals (Hall and Lennard-Jones [65,66]; Lennard-Jones and 
Pople [117]; Hall [62]). Molecular orbitals can be formed from these bond 
orbitals, each of which is composed of atomic orbitals of two adjacent atoms. This 
concept of localized a-bonds seemed to be appropriate for saturated molecules 
and has been used by Brown [17] and extended later by Del Re [37]. Along these 
lines are methods in which spa-hybrids are used as building units for paraffins 
(Sandorfy [188]; Yoshizumi [212]). Whereas the C-H bonds are neglected for 
simplicity, the introduction of response integrals besides the well-known resonance 
integrals f l '= mfl (m = 0.34) allows for the consideration of non-bonding inter- 
actions. An extension of Yoshizumi's work to include non-linear paraffins which 
requires additional parameters has been described by Fukui et al. [54]. Recently 
another LCBO method for a-electron systems has been proposed where the inner 
shell electrons are represented by AO's and the outer electrons by bond orbitals 
(Hamano [67]). SCF MO's are associated with lone pairs (one solution) and 
localized a-bonds. The overlap between BO's is considered to be smaller as 
between AO's and therefore neglected 11. The interaction between different bonds 
is given through the non-diagonal LCBO SCF elements which are taken as 
semiempirical parameters. Linear combinations of hybrids have been used in a 
Hiickel-like theory for saturated compounds (Pople and Santry [174, 175]). 
Three a-values and six fl-values have been used and Hu~ is neglected if ~, v are on 
the same atom, which is valid only in highly symmetrical molecules. 

Whereas a strict application to aliphatics caused no problem, molecules 
involving a- and n-bonds had to be treated with different methods for the a- and 
n-electrons, which sometimes was expressed by the assumption of non-polarized 
a-bonds (McEwen [135]). This discrepancy has finally led to extensions which 
were more consistent. A good reason for the importance of the influence of the 

xl The same idea has been expressed in another context again by Cook et al. [26]. 



122 K. Jug: 

a-electrons on the n-electrons was given through a re-examination of conventional 
variational procedures in a -n-sys tems where the dependency of n-electron 
parameters of the a-electrons and vice versa was studied (Parks and Parr [163]; 
Stewart [200]). The last author gave a rather pessimistic view on the choice of 
semiempirical parameters. Non-empirical calculations on benzene with varying 
scale parameter Z show both state energies, and to a lesser degree excitation 
energies, as rapidly varying functions of Z. In conclusion any energy calculation 
with an effective charge Z which is not properly defined for molecules might have 
little quantitative significance (Stewart [201]). 

The above described methods by Hoffmann [83] and Pople [176-179] have 
been widely used (e.g. Hoffmann [84]), occasionally even for second-row elements 
(Santry and Segal [189]). Another consistent scheme 12 to treat a- and n-electrons 
has been developed by Berthier et al. [10]. Unfortunately the approximations 
make the method invalid for strongly polarized molecules. This difficulty may be 
avoided by introducing two-center repulsion integrals (de Brouck6re [16]). 
Similar to the o~-method in n-electron theory, the extended Hiickel scheme has 
been extended to include net charge effects in the effective Hamiltonian. The net 
charges are determined by an iterative SCF process, which sometimes leads to 
convergence problems (Duke [44]). It might be worthwhile to study this question 
in connection with the recent remark that the operator F which determines the 
MO coefficients and the operator Hoff which determines the total energy are 
different in cases where net charges are involved (F. Harris [74]). 

Some methods have lost equivalence with the SCF method through application 
of the Wolfsberg-Helmholz approximation for 13 (Bishop et al. [ 13]) or establishing 
a linear dependency of W. and (##/vv) (Roos and Skancke [183]) or quadratic 
dependency of fl (Nishimoto [149]) on the bond distance R.~ which is taken as 
linearly dependent on P.~. Nishimoto has argued that the quadratic term in his 
formula is small, so it might not effect the convergence of the SCF process. It has to 
be proved that this is valid also for the other methods. It is not quite clear, however, 
that a variation of Etmal with respect to Ruv (Skancke [195]; Nishimoto [149]) or 
with respect to P.~ is equivalent. 

An increasing number of semiempirical theories has been offered in recent 
years, many of them with similar features to those described above. Some remarks 
will be given on the following ones: A method similar to Pople's all-valence 
electron treatment has been proposed by Klopman [105, 106], where the one- 
center terms are determined through transition energies [104] and where the 
two-center terms are rigorously simplified to two species nAB and fiAB, for which 
further approximations were applied. There is no discussion about the justifica- 
tion of the more severe simplifications. A method similar to the INDO method, 
where one-center exchange integrals are retained, has been proposed by Dixon 
[43] and Dewar and Klopman [41]. A simplified method for saturated hydro- 
carbons which has a close resemblance to a n-electron method (Fischer-Hjalmars 
[48]) has been proposed by Skancke [196]. Overlap is included and exchange 
and hybrid type integrals occur. Most interesting to notice is that 5- and fl-values 
are strongly dependent on the value of the overlap integral. Comparisons are 

12 The method has been originally designed for transitio n metal complexes (Berthier, Millie, and 
Veillard [11])i 
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made for Slater's exponents and the optimized exponents for C2 by Ransil [182]. 
An iterative SCF procedure for a-reorganization effects has been used by Jungen 
et al. [103] for a treatment of re-electron transitions in formaldehyde. ZDO is 
rigorously applied, the remaining Coulombintegrals are multiplied with factors 
to compensate for correlation. The choice of these correlation factors is not 
unreasonable, but lacks somewhat quantitative significance. Heteroatomic cases 
cause a special problem. In a treatment of diatomic hydrides Jenkins and Pedley 
[94] describe the valence electron pair by an MO, the remaining electrons by 
AO's. The authors insert correction effects for the non-orthogonality. Because 
of the involved approximations, the paper is not easy to read. A simplified SCF 
method for a-bonded systems is described and applied to hydrogen halides by 
Pohl et al. [170]. The inner shells and subshells are treated as non-polarizable 
core, only the electron pair in the bonding orbital is considered explicitly. Well- 
known approximations are used for core and electronic repulsion integrals, a 
new feature is the core-core repulsion formula, which is mentioned as due to 
J. Linderberg, 

g . . . . . . . . .  = (1 + (Z - 1)A exp(-  2oR)) /R ,  

Z nuclear charge, Q orbital exponent of a subshell, 
A characteristic factor for atom involved, 

(3.t) 

which allows for penetration of the proton into charge clouds of lower subshells. 
Harris and Pohl [70] have made split-shell calculations for the valence electron 
pair. The different spatial orbitals for the two considered electrons were found to 
be complex conjugates in certain cases, which means that the spatial distribution 
is the same but the phase is different. 

This may be the point to make a few remarks about the choice of/? in Hiickel- 
like theories, which once again seems to draw attention (Fukui [53]) and leads 
to discussions (Golebiewski and Taylor [-61]), sometimes about facts which are 
already well-known (Blyholder and Coulson [14]). The series of calculations by 
Hoffmann [-83, 84] has led to increased efforts with the extended Htickel method 
and the various choices for the evaluation of integral/? are sometimes considered 
specific for the extended Hiickel formalism, although most of them have their 
origin in re-electron theory. A survey is given in Table 1. 

First one has to distinguish between methods using overlap integrals (Z) or 
neglecting them (2). A relationship between/~,~ in a treatment including overlap 
integrals and/?,~ with neglect of overlap had been derived as early as 1941 by 
Mulliken and coworkers in a remarkably simple way. It has since been proved 
to be valid to the first order if one considers the basic orbitals for/?u~ as L6wdin 
orthogonalized orbitals (Ohno 1-153]). Methods 2-7 deal with overlap; 8-13 
deal with the ZDO assumption. The simplest assumption for the first kind is the 
proportionality between/?u~ and S,~ which was proposed first by Wheland and 
has been used later, e.g. in calculations on borides (Longuet-Higgins and Roberts 
[122, 123]). Methods 313 and 4 are different kinds of corrections to the arithmetic 
mean, which is sometimes called the Mulliken approximation. It may be noticed 

13 The Wolfsberg-Helmholz approximation has been criticized recently by Berthier et  al. [12] for 
lacking covariance under a unitary transformation of the basis. 

9 ;Fheoret. chim. Acta (Berl.) Vol. 14 
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Table 1. Various approximations for the fi integral 

1 .  _ _  ~ 1 ~ 

2. Z flu, = KSu~ 

3. z ~.~ = �89  + < ) s .  

4. Zfiuv=�89 +(6~u +8)}Su~ 

6. Z / ~  = K ( ~ )  1/2 S~ 

7. X f l u v = K ~ S , ~  
~(G + ~) 

8. 2 flu~ = Aexp(-BRu~) 

9. 2 fluv = A e x p ( - R u 3  

10. 2 flu~ = AIR 6 

2 
v v)} S,~ 

% 

11. 

12. 2 fl,~ = - {K~ [(##/##) + (vv/vv)] + K2(##/v v)} Su~ 

1 dSu~ 
13. 2 / ~  

R~ dR~ 

Mulliken et al. [144]; Pariser and Parr [161] 

Wheland [208]; Longuet-Higgins and 
Roberts [122, 123] 

Wolfsberg and Helmholz [209]; Hoffmann 
[83] 

Berthier [8] 
Cusachs [30] 14 

Ballhausen and Gray [5]'  

Yeranos [211] 

Pariser and Parr [161] 

Pritchard and Sumner [181] 

Kon [109] 

Ohno [153] 

Fischer-Hjalmars [47] 

Linderberg [118] 

however that Mulliken himself used this kind of approximation very carefully 
only for the three- and four-center integrals (Mulliken [142], see p. 500, 521). 
Some remarks on this approximation in terms of a series expansion have been 
given (Ruedenberg [186]; Parker [162]). Methods 3 and 4 result in connection 
with approximation 1 in the proportionality between flu~ and Su~. This cannot 
be valid in general because fl-values for non-nearest neighbors may have opposite 
sign to nearest neighbor/%values (Chong [21]). An extension based on the obser- 
vation that the kinetic energy integral for neighbors is proportional to the square 
of the overlap integral (Ruedenberg [187]) has led to method 6. Some discussion 
about failure of the method to be invariant under rotations has been given 
(Newton [146], Cusachs [31]). Finally there have been proposed geometric 
(method 7) and reciprocal (method 8) means. The first requires a positive value 
for ~u~.. A case has been reported where this product was negative in a calculation 
on thiosulphate (Bishop et al. [13]). The author is inclined to believe that this is 
due to the way in which Bishop et al. assume the diagonal elements are dependent 
on net charges and iterate them to consistency (see again F. Harris [74]). Methods 
8-13 present different choices for//-values in the ZDO assumption. Whereas the 
exponential dependency (methods 8-9) seems to be a natural choice for a proper 
distance interval, the inverse sixth power dependency (method 10) and the de- 
pendency on distance, two-center repulsion integral and overlap (method 11, 12) 
are quite unusual. A most interesting relationship has been derived recently 
between fl and the slope of the overlap integral through a consistency requirement 
in PPP-theory concerning the equivalence dipole length and dipole velocity 

1,* A similar form/3 ~ S(1 - S) is mentioned in Parr's book ([166], p. 100) as due to an unpublished 
work of K. Ruedenberg and E. L. Mehler. 
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forms of  the oscillator strength (method 13). The surprising result has been found 
that  the slope of  the overlap integral nearly independent  of the choice of  the 
orbital  (Slater type and SCF orbitals), a l though the overlap values may  differ 
by 20 %. However,  the actual fl values have been calculated with Slater's shielding 
exponents.  The formula  should be checked with the more  recent exponents 
(Silverstone et  al. [192], H e r m a n n  et  al. [-80]). 

Wrat ten  [210] has given some comment  on the/3 ~ of  Pople 's  C N D O  method  
under  the assumpt ion  of  exponential  dependence of  the overlap integral on the 
distance. A propor t ional i ty  between fl and the shielding exponent  is found. To 
make  this me thod  superior to the others it has to be proved, however, that/3 goes 
to the proper  limit ~ if R = 0. This puts some restrictions on the form of S. The 
exponential  form does no t  converge properly. 

The variety of  choices for/~ and/3  parameters  seems to suggest that  there is 
no simple approximat ion  for this integral. 

0~tz 

V. Choice of Parameters in 7t-Electron Systems 

1. O n e - E l e c t r o n  O n e - C e n t e r  I n t e g r a l s  

A B C D E 

Carbon, eV - 6.64 - 5.92 - 12 - 11.4 - 11.28 

A Htickel method; - I  B ...... = e + fl (Fischer-Hjalmars [47]); 
B Orthogonalized orbitals; e = - �89 + Ac) (Berthier et al. [10]); 
C Htickel method including overlap; c~ = -(Ic + Ac) (Giambiagi et al. [57]); 
D Extended HOcket method including overlap; ~ = - 1  c (Hoffmann E83]); 
E SCF method; e = - l c  (Fischer-Hjalmars E47]). 

H i l c k e l  * R e m a r k s .  Note  that  au :SzuHeffzudz whereas in SCF theory 

~xu -- ~ Zu HcoreZu d'c . 

W2p A B C 

Carbon, eV - 11.22 -9.50 -9.59 

A Carbon sp 3 valence state potential; W2p = - I  c (Pariser and Parr [161]); 
B fits average ionization potential of benzene and ethylene; 

1 
Ci#Civ ~jzv 

#,v 

(Hush and Pople [90]); 
C fits ionization potential of ethylene; - IEth = W2. + fl~ + �89 {~# [/~#) -- (##] v v)} (Fischer-Hjalmars 

[48]). 

R e m a r k s .  Neither  ct nor  W2p are necessary for the calculation of  excitation 
energies in hydrocarbons .  Valence state ionizat ion potentials and electron 
affinities are most  often taken from the work  of  Hinze and Jaff6 [81] and Hinze 
et  al. [82]. 

9* 
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2. One-Electron Two-Center Integrals 

6~,~ A B C D E 

Benzene, R = 1.39 A - 2 . 6  -2 .2"  -5 .19  -5 .15  -1 .16  
eV -2 .39  b 

-2 .79  ~ 

A Hiickel method without overlap; flun~ ~k~l (Fischer-Hjalmars [47]); 
B Pariser-Parr method without overlap;/3,v (Pariser and Parr [161]); electronic interaction integrals 

calculated 
a) theoretically, ~ = 1.59, 
b) semiempirically, 7~, = Ic - A o  
c) by uniformly charged sphere model; 

C Hi,ickel method including overlap;/3uv = �89 K(fiu + a~)Su~ (Hoffmann [83]); 
D non-orthogonal  orbitals; flu~ =/~,~ + �89 + ~)S,~, flu~ = - 8.53Su~ (Berthier [8, 10]); 
E Hiickel method including overlap;/3~ = - (Au + Av) (Giambiagi et al. [57]). 

Remarks. Dependency of fl on the distance R is given in Table 1. 

3. T w o - E l e c t r o n  O n e - C e n t e r  I n t e g r a l s  

(p#l##) A B C D E F G H I 

Carbon, eV 16.93 17.30 15.71 12.2 11.9 10.53 9.87 12.72 12.38 

A theoretical value using Slater type 2p-orbitals, ~ = 1.59 (Parr, Craig and Ross [167]); 
B theoretical value using orthogonalized orbitals (Fischer-Hjalmars [49]); 
C theoretical value using SCF orbitals (Silverstone et al. [192], see also Sponer and L~Swdin [199]); 
D ~ # l  P#)~x,ot = (g# I/~#)nr - n" 2 Vzp ...... n number  of 2p-electron pairs (Arai and Lykos [4]); 
E (#/~l #/1) = ~ F ~  'P (Fischer-Hjalmars [48]); 
F semiempirical value, (##[ ##) = 1 - A (Pariser [159]); 
G (##[#/~) = I - A + ~(I + A) (Julg [98, 99], Berthier et al. [9]); 
H derived from reaction 2C ~ C- + C + together with correlation considerations (Orloff and Sinano~lu 

[157]); 
I minimization of newly defined valence state energy, non-integral n* (Silverstone et aL [192]). 

4. Two-Electron Two-Center Integrals 

(#/~] vv) A B C D E F 

Benzene, R = 1.39/~ 9.03 8.71 10.31 5.32 7.3 7.45 
eV 

A theoretical value using Slater 2p~r-orbitals, ~ = 1.59 (Parr, Craig and Ross [167]); 
B orthogonalized orbitals, (Fischer-Hjalmars [49]); 
C (##[ vv) = 1/R (Pople [171]); 
D (/~#Jvv)= 1/(a + R), 1/a ~ (#lzl##)= 1 -  A (Nishimoto and Mataga [151]); 
E (##D v v)= �89 (vvl v v ) } -  (aR + bR2), a and b fitted by uniformly charged sphere model 

for 2.8 A and 3.7/~ (Pariser and Parr [161]); 
F theoretical value using Slater 2p~-orbitals, ff = 0.925 derived by fitting theoretically the value for 

(,u#[##) in 3F (Julg [98, 99]); Berthier et al. [9]). 
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5. Multicenter, Exchange and Penetration Integrals 

Benzene, R = l . 3 9 A  A B C 
eV 

(11112) 3.37 -0 .067  
(11113) 0.403 
(11123) 1.957 
(12112) 0.968 0.088 
(1: 11) 23.213 24.974 
(1 : 22) 0.759 0.762 
(1 : 12) 1.761 - 1.641 
(1 : 13) 0.105 0.083 
( ln:  11) 0.645 0.667 
(lri : 22) 0.018 0.005 
(In: 12) 0.093 0.004 

35.77 
2.42 
3.06 

0.608 

A theoretically 
Ross [167]); 

B theoretically 
C theoretically 

calculated for Slater 2p~-orbitals (Fischer-Hjalmars [49], see also Parr, Craig and 

calculated for orthogonalized orbitals (Fischer-Hjalmars [49]); 
calculated for Slater 2pzc-orbitals, ~ .... = 1.13, ~ = 1.61 (Ruedenberg [187]). 

Remarks. Values for four-center integrals may be obtained from Harris and 
Michels [72]. 

VI. Problem of Overlap 

Even if'one considers the basic orbitals as L6wdin orthogonalized orbitals {2} 
there remains the problem how to choose the basis {)~} to get the transformation 
matrix S -1/2. Until now many proposals have been made for basis sets {Z}. Even 
a restriction to Slater type orbitals yields a variety of choices which differ in the 
value for the overlap integral S. Some values for overlap integrals for re-electrons 
are listed in Table 2. 

Table 2 

A B C D 

S 0.26 0.33 0.38 0.49 
Benzene, R = 1.4 A 

A STO's  with ~ = 1.59 Parr, Craig and Ross [167] 
B Carbon SCF orbitals Sponer and L6wdin [199] 
C CH 3 radical orbitals Hermann et  al. [80] 
D STO's  with ~ = 1.015 Giambiagi et al. [57] 

The Slater type overlap integral is essentially dependent on the choice of the 
exponent, which is determined by the choice of the effective charge Zer f and the 
effective quantum number n*. The larger the shielding by the "inner" electrons 
the more extended is the charge cloud of an atomic orbital in space. Atomic 
shielding parameters or effective nuclear charges have been proposed through 
the variation principle to an appropriate atomic valence state energy (Zener [213], 
Silverstone et al. [192]), atomic energy data (Slater [197]; Kohlrausch [107]), 
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th rough  compar ison  of  the moments  with SCF calculations (Burns [19]) and 
th rough  molecular  fragment calculations 15 (Hermann  et al. [80]). 

Tables 3 and 4 show that  newer studies suggest different values for the effective 
charges of  a-  and n-orbitals. This conclusion has been reached earlier th rough  
exponent  opt imizat ion of  C2 in an ab-initio calculation (Ransil [-182]). Some 
scale factors yield rather large values for the n-electron overlap integrals. This 
raises some doub t  in the validity of a t runcated expansion of  integrals in powers 
of  S. 

Table 3. Effective charges Z~ff in neutral carbon atoms 

A B C D 

.ls 5.70 6 5.68 5.38 (0.92); 9.15 (0.08) 
ls 5.70 5.375 5.68 5.38 (0.92); 9.15 (0.08) 
2s 3.25 4.37 3.33 3.36 (0.849) 
2px 3.25 3.78 3.22 1.94 (0.118); 3.36 (0.419); 7.1 (0.087) 
2py 3.25 2.76 3.22 1.94(0.118); 3.36(0.419); 7.1 (0.087) 
2pz 3.25 2.03 2.58 : 1.91 (0.435); 2.84 (0.438); 5.18 (0.194) 

A Slater [197], B Kohlrausch [107], C Silverstone et al. [192], D Hermann et al. [80]. 

Table 4. Effective charges for 2s- and 2p-orbitals in carbon ions 

Charge A B C D 

+ 3 4,36 4.30 4.37 
+2 4,02 3.95 3.78; 4.37 
+1 3.63 3.60 2.76; 3.78; 4.37 3.5 

0 3.28 3.25 2.03; 2.76; 3.78; 4.37 3.08;3.13; 3.29 
- 1  2.93 2.90 1.28; 2.03; 2.76; 3.78; 4.37 2.3;2.98; 3.2 

~-orbital effective charges in italics. 
A Zener [2131, B Slater [197], C Kohlrausch [107], D Joy and Silverstone [95]. 

M e t h o d  o f  Calculat ion 

Zener :  Variat ion method  with variat ion parameters  n, 7, 3. Z e f  f = n*(•eJn)l/2; 

Zef f elf. charge, n* eft. qua n t um  number,  n number  of  electrons in L-shell, ei 

ionizat ion potential,  7 exponent  for ls, 3 exponent  for 2s, 2p. 
Slater:  Rules to get adjustment  to stripped atoms, X- ray  energy levels, sizes 

of  a toms and ions. 
Kohlrausch:  Effective charges are calculated by the assumpt ion that  the elec- 

t rons are influenced by inner electrons only (Aufbau principle); A = e(Z - a) 2 - 7, 
where A = ionization potential.  

Silverstone et al: Minimizat ion of  a valence state energy which is defined by 
keeping only a tomic  terms in a molecular  energy expression. 

Hermann  et al.: Minimizat ion of the energy of  the C H  3 radical with an ab- 
initio calculation. 

15 For further data see Sharp-Ritter and Lykos [191]. 
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VII. Possible Extensions 

The description along these lines so far is rather limited. We have to remember 
that we posted severe restrictions on the scheme at the very beginning: We gave 
a picture of a scheme for a closed-shell molecule where each electron was repre- 
sented by a single atomic orbital only and the total wavefunction by a single 
configuration. The molecular orbitals were determined by the independent 
particle Hartree-Fock formalism. 

Extensions of this scheme should consequently include 1) open-shell situations, 
2) higher than 2prc-orbitals in the LCAO expansion, 3) configuration interaction 
and 4) correlation. Although there has been a lot of work in these directions, we 
are not able yet to integrate these ideas to form a more general scheme similar to 
what has been outlined in Chapters II and IV. 

An open-shell case is given for singly excited states. The reader may have 
wondered why so far no discussion on this topic was included. Although some 
regularities for excitation energies have been found which reduce them to differ- 
ences of a few basic quantities (Lykos [131] ; Murrell and Salem [145] ; Ruedenberg 
[187]), progress has been slow for an obvious reason. The singly excited state is 
not a closed-shell state so that a basic assumption of the treatment in Chapter I is 
not fulfilled. Furthermore it is not at all obvious that a parametrization scheme 
which is based on the variation of the ground state energy should be significant 
for excited states. The author and others have made ab-initio calculations in an 
extended Hartree-Fock formalism on excited//u- and//g-states of H 2 to simulate 
a situation where a ~z-electron in a re-electron system moves into a higher excited 
state (Jug et al. [97]). It turns out that although the a-MO did not change much, 
the g-orbital exponents for the re,- and rco-orbitals differ considerably if the total 
energy of both states is minimized separately 16. This yields as conclusion that not 
only in Hiickel theory, but also in SCF theory one might not be able to describe 
properties of the ground state and excited states with the same set of parameters. 
Dewar has pointed this out earlier and uses a semiempirical technique to determine 
the resonance integral/3 from the heat of formation of molecules to get reliable 
ground state properties (e.g. Chung and Dewar [22]; Dewar and Gleicher [40]). 
The next steps should be taken towards an open-shell semiempirical theory. 
First attempts have already been made (Pople and Segal [178]; Kroto and 
Santry [114]). 

In cases where ionization is involved, problems become even more critical 
because the elimination of one g-electron causes a-re-deformation effects 
(Hoyland and Goodman [85, 86]), which are so large that the assumption of an 
unchanged core (Koopmans [110]) is no longer justified. 

Some efforts have been made to include 3p~- or 3d~-orbitals into re-electron 
theory (Jacobs [93] ; Hartmann [75, 76] ; Sovers and Kauzmann [198]). Although 
some qualitative results have been given, which seemed to encourage proceedings 
along these lines, difficulties in the justification of the predictions of smaller order 
effects in connection with the involved approximations have led the development 
in other directions. 

16 An indication for this result is given in a ~z-electron calculation by Huzinaga [91], however the 
a-core has been subjected to certain approximations. 
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For a long time, it has been well-known that configuration interaction might be 
important in molecular calculations. Extensive calculations have been performed 
(Parr, Craig and Ross 1-167]; Pariser [160]; Kouteck) et al. [113]), suggestions for 
excited states have been made (Pople [172]), but no systematic way has been 
developed yet how to choose the most important configurations and integrate 
them into a semiempirical scheme. Recently studies have been made on triplet 
and doublet states of polyenes and polyacenes to compare restricted open-shell 
treatment and limited configuration interaction (Wagni6re [206]). Both methods 
may need different semiempirical parameters in re-electron systems and the 
quality of total energy values is found to be accidental sometimes. Another 
study which systematically treated the effect of more and more "excited" con- 
figurations revealed the fact that a large number of higher lying doubly excited 
configurations may cause a considerable change in the value of excitation energies 
(Allinger and Stuart [2]). 

An encouraging step forward is the paper by Hansen [68] who has shown 
that in a two-configuration case for H 2 the formalism of the one-configuration 
case may be preserved by ascribing the/ /~ and ~u#[##) parameters reduced and 
the ~#1 vv) parameters increased values. This leads to the conclusion that even 
in more complicated cases one may take care of correlation in semiempirical 
theories through a proper parameter choice. 

Although there has been much work done on the explanation of correlation 
effects concerning the one-center repulsion integral ~/~[p/~) (Kolos [108]; Julg 
[98, 99]; Arai and Lykos [4]; Hermann [79]; Orloff and Sinano~lu 1-157]), few 
authors have concerned themselves to create a new scheme to include correlation. 
Perhaps the most extensive efforts have been made in the "m6thode LCAO 
amelior6e" (Julg [100] ; Julg and Bonnet [102]). There have been some difficulties 
in the fundamental argumentation. Later, the method was reduced to a semi- 
empirical process where integrals are multiplied by reduction factors to account 
for correlation (e.g. Julg [101]). Unfortunately this process does not give insight 
into the underlying theoretical structure. For alternant hydrocarbons the alternant 
molecular orbital method (L6wdin [129]) seems to have special merits. It is 
equivalent to a limited configuration interaction treatment, but is superior 
because of its problem adapted character. A series of papers has proved its value 
for calculations on aromatic systems (de Heer [77,78]; Pauncz etal. [-169]; 
Pauncz [168]). Other methods which include correlation implicitly are the split- 
orbital method (Dewar and Sabelli [39]) and the non-paired spatial orbital 
method (Empedocles and Linnett [46]). 

All these extensions cause a serious computational problem and prevent 
calculations for larger molecules. A solution out of this dilemma may be found in 
the idea of building blocks (Orloff and Fitts [156]; Newton, Boer, and Lipscomb 
[147]). The authors propose to build new matrices of the effective Hamiltonian 
for more complicated systems by using the results of previous SCF calculations 
on simpler similar systems. An equivalent idea is the method of grouping Gaussian 
type functions in ab-initio calculations (e.g. Preuss and Diercksen [180]). 

Recently there has been drawn much attention on localized orbitals as the 
most appropriate for transfer to larger molecules (Edmiston and Ruedenberg 
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[45]; Trindle and Sinano~lu [203]). Investigations on correlation in localized 
orbitals have also been started (Sinano~lu and Skutnik [194]). 

From a practical point of view, an idea for the calculation of multicenter 
integrals might prove useful: the expansion of two-center charge distributions 
as a truncated set of one-center distributions (Harris and Rein [71] ; Cizek [23]). 

Recently it has been attempted to get some more insight into r~-electron theory 
by the method of second quantization (Linderberg and Ohrn [119, 120]; Ohm 
and Linderberg [155] ; R. Harris [73, 74]). So far it seems that the difficulties in 
calculations cannot be avoided by a simple recipe. 
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